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Upper and lower bounds on scattering lengths 

N. ANDERSON, A. NI. ARTHURS and P. D. ROBISSOS 
Department of Mathematics, University of York 
MS. received 9th July 1969 

Abstract. Upper and lower bounds on scattering lengths for static potentials 
are presented. Their derivation is based on complementary variational prin- 
ciples for a certain class of linear operator equations. The  well-known bounds 
of Schwinger and of Spruch and Rosenberg are obtained from this approach 
together with related complementary bounds, some of which are new. The  
results are illustrated with calculations for screened Coulomb potentials. 

1. Introduction 
The s wave +(Y) of a zero-energy, potential-scattering process can be specified in two 
equivalent ways. We can either regard +(Y) as the solution of the differential equation 

{ - d2/dp2 S P ( Y ) ) + ( Y )  = 0, 0 6 r <  cc (1) 

+(e) = 0, + ( I . )  - A -Y, a s r - t  cc, (2) 

subject to the conditions 

or alternatively think of it as the solution of the integral equation 

d ( r )  = -Y- Jr min(Y, Y')~(Y')+(Y') dit'. (3) 

Here 

where V(Y) is a short-range potential and m is the mass of the scattered particle. 
The  scattering length A is given by the relation 

A = - i'u" Y P ( Y ) + ( Y )  dr. ( 5 )  

The Spruch-Rosenberg (1959) bound for A arises from the differential equation 
(DE) approach using a Kohn-type variational principle, whilst the Schwinger bound 
for A is also derived variationally from the integral equation (IE) approach (see e.g. 
Moiseiwitsch 1966). Recently it has been shown (Arthurs 1968) that two-sided 
bounds are obtainable from the IE, and preliminary calculations have been reported 
for positive screened Coulomb potentials (Anderson and Arthurs 1969). 

In  this paper we exhibit a number of different bounds which are obtainable from 
the two approaches, for both positive and negative potentials. New bounds are 
derived from the DE which are complementary to those of Spruch and Rosenberg, 
and from the IE  which are complementary to Schwinger's. With the IE  approach, 
various decompositions of an operator are possible and lead to alternative bounds. 

All the results are presented as special cases of the general theory for a non- 
homogeneous equation. They are illustrated with calculations for both positive and 
negative screened Coulomb potentials. In  conclusion the relative merits of the DE 
and IE  approaches are briefly discussed. 
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2. General theory 

We consider a physical problem which is described by the linear equation 

(Q+ T"TM = f O < r <  CO (6) 

$ = +B on the boundary of (0, CO). (7) 
with 

Here f is a known function of the coordinate Y, $B specifies the behaviour of the exact 
solution q!~ at zero and infinity, Q is a symmetric positive-definite operator with a 
left inverse Q1-l, and T i s  a linear operator with adjoint T" defined by the relation 

where oT is a numerical factor. We assume that all operators and functions used are 
real. The applications considered in $5 3 and 4 correspond to: 

where 7 ( y )  is either zero or a short-range function of r ,  and 

(ii) T = integral operator, T* = adjoint integral operator, oT = 0. (10) 
Complementary variational principles associated with certain boundary value 

problems have been developed recently (cf. Arthurs 1969, Robinson 1969). For 
problems described by equations (6) and (7) these principles lead to upper and lower 
bounds 

G(TQ.2) G I(+) J(@d (11) 
for the functional 

m 

I(+) = -4 1 f +  d r + h [ $ W I T .  
0 

The expressions for the functionals J and G (which are stationary at 4) are 

JjQ1) = @1(Q+ T*T)@1 dr-  1," f@l dr - uT[(h@l -+B)T@>ll r  ( I 3 )  1: 
and 

G( T@2) = - $ @, T" T@2 dr - 4 (f- T" TQ2)QI- ' ( f -  T" TQ2) dr 

(14) 
s: sa 

- 4 w 2  - 4EJ T@21:. 
From these expressions for J and G it can be verified directly that the bounds in 
equation (11) hold good, provided that the trial function Ql satisfies 

u T [ ( @ l - $ B ) T ( @ l - $ ) l ~  O *  (15) 

3. Differential equation approach 
We now apply the theory of section 2 to the zero-energy scattering problem 

described by the differential equation (1) subject to the boundary conditions (2). 
Equations (1) and (2) are examples of (6) and (7). I t  is convenient to treat the cases 
p > 0 a n d p  < 0 separately. 
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3.1. The casep > 0 
We choose 

Q = P ,  f = 0  (17) 
(18) +B = 0 at  Y = 0, +B N A-1. as r --f 00. 

Then the results of section 2 apply to equations (1) and (2), provided condition (15) 
is satisfied; the optimum choice for this condition becomes 

We shall satisfy (19) by taking the trial function 0, such that 

@l(O) = 0, @ , w a > , - r  as r + 0 0  (20) 

I ($)  * ( R - A ) R + ~  (21) 

where a ,  is a constant. The  basic functionals in ( E ) ,  (13) and (14) then become 

and sa d2 Io dr2 
G(T@,) = 4 @,---@,dr-$ P -1 (@2”)2d~- [ (~@’2-~B)@2’ ]~ .  (23) 

The  boundary term involving R can be subtracted from each functional, and to get 
a useful bound from G it is necessary to make the trial function @, satisfy boundary 
conditions of the form 

@>,(O) = 0, @,- a,-r as Y + ~ O  (24) 
otherwise the lower bound recedes to minus infinity. Then from G < I < J we 
obtain upper and lower bounds for the scattering length A, namely 

A-(@>,) < A < A+(@>,) (25)  
where 

and 
d2 m 

A-(@z) = a,+ p - I @ , ”  ( p -  ;l;;) @,,dy 
0 

The upper bound (26) is the one due to Spruch and Rosenberg (1959), while the 
lower bound (27)  appears to be new. 

3.2. The casep < 0 

definite. We retain the identification 
When p is negative we cannot set Q = p as in 5 3.1, because Q is to be positive- 

+ p  = Q+T“T 
d2 

dr2 
-- 
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but this time we take 
Q = (Ao - -PI 

OP 
d2 
dr2 

T*T = - - +A 

where A, is the lowest eigenvalue of the equation 

d2 
dv 

( - p ) - l  (- -1 8 = 

Evidently 0 is positive-definite provided A, > 1. 

A00. ( 3 1 )  

From (30) it follows that 

(32) 

where ~ ( r )  is a short-range function of Y which depends on p(v) .  It is not necessary 
to find 7(v), since to evaluate the boundary terms in expressions (12) to (14) we merely 
need to know the nature of T when Y is large. 

We now apply the theory of 4 2 with 

f =  0, fJT = 1 (33) 
taking trial functions Ol and Q2 which satisfy the boundary conditions (20) and (24). 
The  resulting bounds for A are readily seen to be 

and 
cc 

A-’(@,) = A+’(@2)+(Ao-l)-1/  p-1(p@,-@,”)2dr (Ao > 1). (36) 

The upper bound (3.5) is that due to Spruch and Rosenberg (1959), being identical 
to the expression in (26), while the lower bound (36) appears to be new. 

4. Integral equation approach 

convenient to rewrite (3) in the form 

0 

We next turn to the IE  approach specified by equations (3) and (5). It is more 

( P + W  = - T P  (37) 
where A- is the symmetric positive-definite integral operator defined by 

KI/(if) = p(r)min{r, Y’}P(Y’)$(Y’) di,‘. (38) 1: 
Equation (37) can be identified with (6) in various ways, which we consider separ- 
ately. In  all of these ways the operators T and T* are given by condition (lo), so 
that 

and no boundary terms appear in expressions (12) to (14) for I ,  J and G. Thus T 
and T* only occur in the product T*T, and individual representations of them are not 

UT = 0 (39) 
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required. All we need is the result that any symmetric positive-definite operator 
can be decomposed into a product T*T (Mikhlin 1964). We note that, from equa- 
tion (39)) condition (15) is automatically satisfied. 

4.1. Positicep; Q = p 
For positive potentials the straightforward choice is 

T*T = K ,  Q = P )  f =  - rp * (40) 

(41) 

(42) 

Using equations (5) and (11) to (14)) (40) leads to 

B-(@l)  6 A 6 B+(@>,) 
where 

m 

B + ( Q 2 )  = \ (@zK@z+p-1(rp+K@-,)2} dr 
- 0  

and 

B-(@I)  = - ( ~ Y P @ - , + @ ~ ( P + K ) @ I )  dr. (43) 10' 
The lower bound (43) is due to Schwinger, while the upper bound (42) was derived 
by ,Irthurs (1968). 

4.2. Positice p ;  Q = (1 + Xo)K 

into the form (Q+ T*T) by taking. 
_In alternative way of identifying equation (3'7) with (6) is to decompose (p+K)  

Q = (1 + ho)K, T*T = p-XoK (44) 

K-lpO = ho6 (45) 

f = -  l'P (46) 

where $1, is the smallest eigenvalue of 

( A ,  is the same number as that specified by equation (31) in $ 3.2). Then again with 

we obtain 
C-(@I) Q A < C+(@z) 

where the lower bound C-(@,) is the same as in equation (43). The  alternative 
upper bound 

X 

C+(@Z> = 1 @2(P-~oK)@z dr 
0 

+(1 + h o ) - l J w  (p~+(p-XoK)@,}K-1~r+(p-XoK)@2} dr (48) 
0 

seems to be new. 

4.3. -\-egatizbe p ;  Q = (1 - Xo- I ) (  - p )  
For negative potentials a suitable choice is 

T*T = -(pho-l+K), Q = (1 -X, - l ) (  --PI) f = rP (49) 
where we now think of A, as the smallest eigenvalue of 
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Thus Q is positive-definite provided again that A. > 1. Using equations (5) and 
(11)-(14), we find that (49) leads to 

where 
B-’(@2)  Q A Q B+’(@l) ( 5 1 )  

B+‘(@1) = - (2~p@1+@1(p+K)@1}d~ (521 
and 1: 

B-’(@2) = @z(pAo-1+K)@2d~+ - JT {rp+(pA0-1+K)@z} 
A,-1 0 

(A0 ’ 1). (53 r 
s: 
x p - ’ ( ~ p  + (PA,-’+ K ) @ J  dr 

The  upper bound (52) is due to Schwinger, while the lower bound (53) is contained 
in a result of Arthurs (1968). 
4.4. Negative p ;  Q = ( A o -  l)K 

An alternative decomposition to (49) is provided by taking 

T”T = -@+A&), Q = (A0 - 1)K, f = rp (54) 
where A, is the number defined in equation (SO) .  Once again Q is positive-definite 
provided that A, > 1. Using equations (5) and (1 1)-( 14), we find that (54) leads to 

C-’(@,) Q A Q C,’(@l) (55) 
where the upper bound C+’(@.,) is given by the Schwinger expression (52), and the 
lower bound C-’(02) is given by 

which appears to be new. 

5. Illustrative results 
To illustrate the theory we have calculated bounds on scattering lengths for both 

positive and negative screened Coulomb potentials given by 

V(y) = h P (  - P W  and V(y> = - kXP( -Py>>/ r  (57) 
/3 being some positive parameter. The scattered particle was chosen to have mass 
m = 1 A.U. and the following trial functions were used: 

D.E. approach = a(1- exp( - zr)}  - Y 
I.E. approach = a(1- exp( - Y)} - ~ ( 1 -  exp( - Y)) 

(58) 
(59) 

where a and cc are variational parameters. These functions have the correct behaviour 
at zero and infinity. The trial function (59), containing a linear variational parameter, 
is one of the simplest functions that can be employed. It proves to be too inflexible in 
the D.E. approach as it leads to divergent lower bounds for /3 >, 2, but this short- 
coming is readily avoided by using the trial function (58). Calculations have been 
performed for a range of values of P and the results (in atomic units) are shown in  
tables 1 and 2. For some bounds, C,, A-’, B-’ and C-’ ,  the eigenvalue A, was 
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B 
3 
2 
3 
5 

10 

B 
2 
3 

10 
3 

Table 1. Upper and lower bounds on scattering lengths for 
V = {exp( -Pr)}/r 

A- A +  B -  B, C- C ,  

1 -0443 1.0595 1,0522 1.0587 1.0522 1.1126 
0.33902 0.34058 0,34044 0,34053 0.34044 0.34919 
0.16817 0.16855 0,16854 0.16854 0.16854 0.18006 
0.066920 0.066980 0.066974 0.066974 0,066974 0.079333 
0*018201 0.018206 0.018204 0.018204 0.018204 0.027764 

Table 2. Upper and lower bounds on scattering lengths for 
V = - {exp( -Pr)}/r 

A-’ A+’ B-’ B,’ C-’ C,‘ 

-1.2359 -1.1030 -1,1121 -1,0967 -1.1709 -1,0967 
-0.36850 -0.34321 -0.34321 -0.34232 -0.36615 -0.34232 
-040501 -0*10082 -0*10114 -0.10072 -042414 -040072 
-0.022704 -0.022260 -0.022260 -0.022255 -0.039693 -09022255 

required. This was calculated by an iteration method (Morse and Feshbach 1963, 
Anderson and Robinson, to be published) giving 

A, = p(0.83969095). 

The condition A,, > 1 which must be satisfied (see $ 4) in A-’, B-’ and C-’ there- 
fore places a lower limit on possible values of p in these cases. 

5. Discussion 
Upper and lower bounds on scattering lengths have been obtained by decomposi- 

tions based on differential and integral equation approaches. Judging by the results 
in  tables 1 and 2 we see that in the positive potential case the B- of Schwinger in 
equation (43) and the B ,  bound in equation (42) are better than the other bounds, 
while in the negative potential case the A,’ bound of Spruch and Rosenberg in 
equation (35) and the B-’ bound in equation (53) give the best results. In  general, 
because of smoothing effects, we expect bounds involving integral operators to be 
better than bounds involving differential operators, and so for a given trial function 
the B bounds should be better than the A and C bounds. 

In  a subsequent communication it is hoped to extend the analysis to the case 
of non-zero energy. 
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